Trusted Platform Module 2.0 » History » Version 140
« Previous -
Version 140/158
(diff) -
Next » -
Current version
Andreas Steffen, 03.01.2021 12:43
Trusted Platform Module 2.0¶
- Table of contents
- Trusted Platform Module 2.0
- Connect to a TPM 2.0 Device
- Derive Persistent Endorsement Keys
- Endorsement Key Certificates
- Generate Persistent Attestation Keys
- Generate PKCS#10 Certificate Requests
- Issuing Attestion Key Certificates
- Configure TPM Private Key Access via VICI Interface
- Define IPsec Connection with RSA AK Client Key
- Define IPsec Connection with ECC AK Client Key
- Starting the strongSwan Daemon
- IKEv2 Authentication with RSA AIK Certificate
- IKEv2 Authentication with ECC AIK Certificate
Connect to a TPM 2.0 Device¶
Install TPM 2.0 Software Stack and Tools¶
In order to connect to a TPM 2.0 hardware or firmware device a software stack implementing the TCG TSS 2.0 System Level API is needed. An excellent open source tpm2-tss library is available from the tpm2-software project which also offers a set of tpm2-tools which itself uses the TCG TSS 2.0 Enhanced System Level API.
When using the latest strongswan-5.9.1 version with a Linux 5.4 kernel or newer, we recommend these latest versions:
- tpm2-tss version 3.0.3: https://github.com/tpm2-software/tpm2-tss/releases/tag/3.0.3
- tpm2-tools version 5.0: https://github.com/tpm2-software/tpm2-tools/releases/tag/5.0
Support for earlier strongSwan versions and Linux kernels can be found here.
In order to test if we can connect to the TPM 2.0 device we list all persistent keys stored in the Non-Volatile (NV) RAM:
tpm2_getcap handles-persistent - 0x81000001 - 0x81000002 - 0x81010001
A manual showing all tpm2-tools functions with their arguments can be found here. The access to the /dev/tpmrm0 TPM resource manager device requires root rights on most Linux platforms. But e.g. with Ubuntu, adding the user to the tss group enables direct access to the TPM device:
sudo usermod -a -G tss <username>
Enable the strongSwan tpm Plugin¶
The strongSwan libtpmtss tpm plugin and the TSS2 interface are enabled and built with the following options
./configure --enable-tss-tss2 --enable-tpm ...
With the strongSwan pki tool we can now list the persistent key stored under the handle 0x81010001
pki --print --type priv --keyid 0x81010001 --debug 2
With debug level 2 some basic information on the TPM device is shown; A second generation Intel firmware TPM running on the Intel Management Engine is employed. Both SHA1 and SHA256 PCR banks are available:
TPM 2.0 - manufacturer: INTC (Intel) rev: 01.38 2018 TPM 2.0 - algorithms: RSA SHA1 HMAC AES MGF1 KEYEDHASH XOR SHA256 RSASSA RSAES RSAPSS OAEP ECDSA ECDH ECDAA ECSCHNORR KDF1_SP800_56A KDF1_SP800_108 ECC SYMCIPHER CTR OFB CBC CFB ECB TPM 2.0 - ECC curves: NIST_P256 BN_P256 TPM 2.0 - PCR banks: SHA1 SHA256
Apparently the analyzed persistent key can be used for encryption only because no signature algorithm is defined:
TPM 2.0 via TSS2 v2 available signature algorithm is NULL with ERROR hash
Debug level 2 shows that pki extracts the public key from the TPM and converts it into a standard PKCS#1 format:
L0 - subjectPublicKeyInfo: L1 - algorithm: L2 - algorithmIdentifier: L3 - algorithm: 'rsaEncryption' L1 - subjectPublicKey: -- > -- L0 - RSAPublicKey: L1 - modulus: L1 - publicExponent: -- < --
At the end of the output the fingerprint of the 2048 bit RSA key is listed:
privkey: RSA 2048 bits keyid: ee:c7:bf:5a:de:0f:11:84:2c:86:2b:69:84:ba:65:b9:81:d2:a9:45 subjkey: df:f2:e9:e7:79:98:f0:d2:0b:62:db:c0:5c:2c:eb:45:73:85:e9:79
Derive Persistent Endorsement Keys¶
RSA Endorsement Key¶
The tpm2_createek command derives a 2048 bit RSA Endorsement Key (EK) in a deterministic way from the secret Endorsement Primary Seed unique to each TPM device and makes the key persistent in the non-volatile memory of the TPM under the object handle 0x81010002
tpm2_createek -G rsa -c 0x81010002
Using the tpm2_getcap command we can check that the newly derived Endorsement Key has been persisted in the NV RAM
tpm2_getcap handles-persistent - 0x81000001 - 0x81000002 - 0x81010001 - 0x81010002
Listing the key properties shows that the 2048 bit Endorsement Key already exists under the handle 0x81010001 analyzed in the previous section
pki --print --type priv --keyid 0x81010002 TPM 2.0 via TSS2 v2 available signature algorithm is NULL with ERROR hash privkey: RSA 2048 bits keyid: ee:c7:bf:5a:de:0f:11:84:2c:86:2b:69:84:ba:65:b9:81:d2:a9:45 subjkey: df:f2:e9:e7:79:98:f0:d2:0b:62:db:c0:5c:2c:eb:45:73:85:e9:79
Delete Persisted Keys¶
We therefore delete the duplicate key with the following tpm2_evictcontrol command
tpm2_evictcontrol -c 0x81010002 persistent-handle: 0x81010002 action: evicted
The key removal can be verified with
tpm2_getcap handles-persistent - 0x81000001 - 0x81000002 - 0x81010001
ECC Endorsement Key¶
Again using the tpm2_createek command we derive a 256 bit ECC Endorsement Key (EK) in a deterministic way from the secret Endorsement Primary Seed unique to each TPM device and make the key persistent in the non-volatile memory of the TPM under the object handle 0x81010002:
tpm2_createek -G ecc -c 0x81010002 -u ek_ecc.pub
Optionally we saved the public key in a TPM 2.0 proprietary format in the file ek_ecc.pub. The fingerprint of the ECC EK private key can be directly displayed with the command
pki --print --type priv --keyid 0x81010002 TPM 2.0 via TSS2 v2 available signature algorithm is NULL with ERROR hash privkey: ECDSA 256 bits keyid: 25:db:73:13:0f:c9:c8:91:68:30:8e:02:89:c1:0d:65:bd:ad:69:2a subjkey: 9c:b9:fb:b0:32:81:24:82:a7:07:b2:bd:bd:d3:7c:2b:22:7f:74:bf
Endorsement Key Certificates¶
Fetched via URL¶
Endorsement Key certificates issued for Intel firmware TPMs can be automatically downloaded from an Intel web server using the tpm2_getcertificate command:
tpm2_getekcertificate -o ek_ecc.crt -u ek_ecc.pub
For successful retrieval the public key ek_ecc.pub in the TPM 2.0 proprietary format is required. Using the pki tool we can list the downloaded EK certificate belonging to the ECC key:
pki --print --type x509 --in ek_ecc.crt subject: "" issuer: "C=US, ST=CA, L=Santa Clara, O=Intel Corporation, OU=TPM EK intermediate for CNL_EPID_POST_B1LP_PROD_2 pid:9, CN=www.intel.com" validity: not before Sep 04 02:00:00 2019, ok not after Jan 01 00:59:59 2050, ok (expires in 10600 days) serial: 07:99:3b:c6:88:aa:7d:72:b0:24:24:05:09:01:bb:42:55:70:1a:43 altNames: tcg-at-tpmManufacturer=id:494E5443, tcg-at-tpmModel=CNL, tcg-at-tpmVersion=id:00020000 CRL URIs: https://trustedservices.intel.com/content/CRL/ekcert/CNLEPIDPOSTB1LPPROD2_EK_Device.crl certificatePolicies: 1.2.840.113741.1.5.2.1 CPS: https://trustedservices.intel.com/content/CRL/ekcert/EKcertPolicyStatement.pdf authkeyId: 17:a0:05:75:d0:5e:58:e3:88:12:10:bb:98:b1:04:5b:b4:c3:06:39 subjkeyId: 9c:b9:fb:b0:32:81:24:82:a7:07:b2:bd:bd:d3:7c:2b:22:7f:74:bf pubkey: ECDSA 256 bits keyid: 25:db:73:13:0f:c9:c8:91:68:30:8e:02:89:c1:0d:65:bd:ad:69:2a subjkey: 9c:b9:fb:b0:32:81:24:82:a7:07:b2:bd:bd:d3:7c:2b:22:7f:74:bf
For the RSA 2048 Endorsement Key we first have to extract the public keyfile ek_rsa.pub in the TPM 2.0 proprietary format using the tpm2_readpublic command because we forgot to do this in the first place:
tpm2_readpublic -Q -c 0x81010001 -o ek_rsa.pub
Now we can retrieve the RSA EK certificate, too:
tpm2_getekcertificate -o ek_rsa.crt -u ek_rsa.pub
and view the contents with
pki --print --type x509 --in ek_rsa.crt subject: "" issuer: "C=US, ST=CA, L=Santa Clara, O=Intel Corporation, OU=TPM EK intermediate for CNL_EPID_POST_B1LP_PROD_2 pid:9, CN=www.intel.com" validity: not before Sep 04 02:00:00 2019, ok not after Jan 01 00:59:59 2050, ok (expires in 10600 days) serial: 14:26:0b:eb:12:a2:82:87:af:3b:75:e0:a1:a4:87:60:72:95:55:92 altNames: tcg-at-tpmManufacturer=id:494E5443, tcg-at-tpmModel=CNL, tcg-at-tpmVersion=id:00020000 CRL URIs: https://trustedservices.intel.com/content/CRL/ekcert/CNLEPIDPOSTB1LPPROD2_EK_Device.crl certificatePolicies: 1.2.840.113741.1.5.2.1 CPS: https://trustedservices.intel.com/content/CRL/ekcert/EKcertPolicyStatement.pdf authkeyId: 17:a0:05:75:d0:5e:58:e3:88:12:10:bb:98:b1:04:5b:b4:c3:06:39 subjkeyId: df:f2:e9:e7:79:98:f0:d2:0b:62:db:c0:5c:2c:eb:45:73:85:e9:79 pubkey: RSA 2048 bits keyid: ee:c7:bf:5a:de:0f:11:84:2c:86:2b:69:84:ba:65:b9:81:d2:a9:45 subjkey: df:f2:e9:e7:79:98:f0:d2:0b:62:db:c0:5c:2c:eb:45:73:85:e9:79
We can easily check that in both EK certificates the key fingerprints (keyid and subjkey) match with those of the EK keys persisted in the TPM.
Stored in Non-Volatile RAM¶
Most hardware TPMs are shipped with their Endorsement Key Certificates stored in NV RAM. E.g. on an STMicroelectronics TPM device the following data objects are stored in an NV index:
tpm2_getcap handles-nv-index - 0x1410001 - 0x1410002 - 0x1410004 - 0x1880001 - 0x1880011 - 0x1C00002 - 0x1C0000A - 0x1C00012 - 0x1C10102 - 0x1C10103 - 0x1C10104 - 0x1C101C0
Using the tpm2_nvreadpublic command we can look for large data objects which are prime candidates for X.509 certificates:
tpm2_nvreadpublic ... 0x1c00002: name: 000b5c112bd5f410d0abe96a50e94ff721a005c32567e4b1112ab0a8fb7e0289b7f2 hash algorithm: friendly: sha256 value: 0xB attributes: friendly: ppwrite|writedefine|write_stclear|ppread|ownerread|authread|no_da|written|platformcreate value: 0x1600762 size: 1033 0x1c0000a: name: 000b1948300e66afad594b7a8e8368d53ddd36908fb2b46dd7b5a88051b50e4047ab hash algorithm: friendly: sha256 value: 0xB attributes: friendly: ppwrite|writedefine|write_stclear|ppread|ownerread|authread|no_da|written|platformcreate value: 0x1600762 size: 639 0x1c00012: name: 000cde411e123085083eedb1c9312e08dd8d229df6a5e16996035a2e3000d860b372c924de0354a6af4c7886656d2065814f hash algorithm: friendly: sha384 value: 0xC attributes: friendly: ppwrite|writedefine|write_stclear|ppread|ownerread|authread|no_da|written|platformcreate value: 0x1600762 size: 707 ...
We can use pki to directly list the properties of the EK certificates:
pki --print --type x509 --keyid 0x01c00002 TPM 2.0 via TSS2 v2 available loaded certificate from TPM NV index 0x01c00002 subject: "" issuer: "C=CH, O=STMicroelectronics NV, CN=STM TPM EK Intermediate CA 06" validity: not before Feb 11 01:00:00 2020, ok not after Jan 01 01:00:00 2031, ok (expires in 3650 days) serial: 72:78:a1:2c:87:b6:aa:45:c4:1f:57:ff:d1:3d:cf:93:42:34:b9:c9 altNames: tcg-at-tpmManufacturer=id:53544D20, tcg-at-tpmModel=ST33HTPHAHD4, tcg-at-tpmVersion=id:00010101 authkeyId: fb:17:d7:0d:73:48:70:e9:19:c4:e8:e6:03:97:5e:66:4e:0e:43:de subjkeyId: e9:3d:51:32:04:42:73:3e:fc:bb:9e:f8:0c:21:9a:53:ec:73:80:94 pubkey: RSA 2048 bits keyid: d3:e3:71:79:df:32:53:34:60:0f:1f:38:dc:d4:6d:53:59:1b:c5:3c subjkey: e9:3d:51:32:04:42:73:3e:fc:bb:9e:f8:0c:21:9a:53:ec:73:80:94
pki --print --type x509 --keyid 0x01c0000a TPM 2.0 via TSS2 v2 available loaded certificate from TPM NV index 0x01c0000a subject: "" issuer: "C=CH, O=STMicroelectronics NV, CN=STM TPM ECC Intermediate CA 02" validity: not before Mar 09 01:00:00 2020, ok not after Jan 01 01:00:00 2031, ok (expires in 3650 days) serial: 51:e8:fc:b2:64:8d:1d:36:a5:bc:d7:c9:63:c1:d6:de:e7:25:09:a4 altNames: tcg-at-tpmManufacturer=id:53544D20, tcg-at-tpmModel=ST33HTPHAHD4, tcg-at-tpmVersion=id:00010101 authkeyId: 66:2d:8f:1c:ec:df:f1:47:a8:b6:f0:ea:29:6a:f7:f2:4c:ad:f9:cf subjkeyId: d1:e8:fc:b2:64:8d:1d:36:a5:bc:d7:c9:63:c1:d6:de:e7:25:09:a4 pubkey: ECDSA 256 bits keyid: 8b:62:31:bf:08:9d:39:74:6d:05:fd:35:eb:2e:13:64:12:86:03:16 subjkey: d1:e8:fc:b2:64:8d:1d:36:a5:bc:d7:c9:63:c1:d6:de:e7:25:09:a4
or we can first retrieve the binary certificate blob from the NV RAM using the tpm2_nvread command:
tpm2_nvread 0x01c00012 -C o -o ek_ecc384.crt
and then list the properties of the EK certificate file:
pki --print --type x509 --in ek_ecc384.crt subject: "" issuer: "C=CH, O=STMicroelectronics NV, CN=STM TPM ECC384 Intermediate CA 01" validity: not before Feb 08 01:00:00 2020, ok not after Jan 01 01:00:00 2031, ok (expires in 3650 days) serial: 39:ed:ae:d4:89:9e:52:08:9f:42:8a:f5:d5:58:7b:50:a6:24:f3:63 altNames: tcg-at-tpmManufacturer=id:53544D20, tcg-at-tpmModel=ST33HTPHAHD4, tcg-at-tpmVersion=id:00010101 authkeyId: bd:96:3e:9a:d5:74:aa:d9:4f:ad:6c:bf:41:6d:d8:5b:4a:55:99:42 subjkeyId: b9:ed:ae:d4:89:9e:52:08:9f:42:8a:f5:d5:58:7b:50:a6:24:f3:63 pubkey: ECDSA 384 bits keyid: 04:68:52:c4:00:ab:10:75:82:57:99:45:1e:7c:12:01:5a:8e:50:c9 subjkey: b9:ed:ae:d4:89:9e:52:08:9f:42:8a:f5:d5:58:7b:50:a6:24:f3:63
We see that the STMicroelectronics device apparently supports 384 bit ECC keys
TPM 2.0 - manufacturer: STM () rev: 01.38 2018 FIPS 140-2 TPM 2.0 - algorithms: RSA SHA1 HMAC AES MGF1 KEYEDHASH XOR SHA256 SHA384 RSASSA RSAES RSAPSS OAEP ECDSA ECDH ECDAA ECSCHNORR KDF1_SP800_56A KDF1_SP800_108 ECC SYMCIPHER SHA3_256 SHA3_384 CTR OFB CBC CFB ECB TPM 2.0 - ECC curves: NIST_P256 NIST_P384 BN_P256 TPM 2.0 - PCR banks: SHA1 SHA256
Generate Persistent Attestation Keys¶
RSA Attestation Key¶
A 2048 bit RSA Attestation Key (AK) bound to the RSA EK with handle 0x81010001 can be created with the tpm2_createak command:
tpm2_createak -C 0x81010001 -G rsa -g sha256 -s rsassa -c ak_rsa.ctx -u ak_rsa.pub -n ak_rsa.name
and made persistent under the handle 0x81010003 with the tpm2_evictcontrol command:
tpm2_evictcontrol -C o -c ak_rsa.ctx 0x81010003 persistent-handle: 0x81010003 action: persisted
The properties of the RSA AK which is a signing key can be displayed with the command
pki --print --type priv --keyid 0x81010003 TPM 2.0 via TSS2 v2 available signature algorithm is RSASSA with SHA256 hash privkey: RSA 2048 bits keyid: df:b7:8f:95:61:8f:70:84:f4:03:e8:7e:83:a6:dd:5f:c5:ff:72:b5 subjkey: 48:82:62:15:74:a2:10:c5:75:70:c2:d6:7d:59:9f:22:d9:4f:9c:07
ECC Attestation Key¶
A 256 bit ECC Attestation Key (AK) bound to the ECC EK with handle 0x81010002 can be created with the tpm2_createak command:
tpm2_createak -C 0x81010002 -G ecc -g sha256 -s ecdsa -c ak_ecc.ctx -u ak_ecc.pub -n ak_ecc.name
and made persistent under the handle 0x81010004 with the tpm2_evictcontrol command:
tpm2_evictcontrol -C o -c ak_ecc.ctx 0x81010004 persistent-handle: 0x81010004 action: persisted
The properties of the ECC AK which is a signing key can be displayed with the command
pki --print --type priv --keyid 0x81010004 TPM 2.0 via TSS2 v2 available signature algorithm is ECDSA with SHA256 hash privkey: ECDSA 256 bits keyid: ba:64:37:a4:0e:c8:42:67:8c:55:5a:f9:1b:2a:eb:ff:5f:40:c3:e3 subjkey: cc:83:49:87:2b:9e:f3:cb:b8:35:12:02:87:ff:14:89:28:44:a6:04
Generate PKCS#10 Certificate Requests¶
RSA Certificate Request¶
The pki tool can directly generate a PKCS#10 certificate request self-signed by the TPM 2.0 private key and containing the corresponding public key as well as the desired end entity identity:
pki --req --type priv --keyid 0x81010003 \ --dn "C=CH, O=strongSec GmbH, OU=AK RSA, CN=edu.strongsec.com" \ --san edu.strongsec.com --outform pem > ak_rsa_req.pem TPM 2.0 via TSS2 v2 available signature algorithm is RSASSA with SHA256 hash Smartcard PIN: <return>
Since we didn't configure a password when creating the AK, just press <return> when prompted for the PIN. With openssl we can verify the contents of the generated certificate request:
openssl req -in ak_rsa_req.pem -noout -text Certificate Request: Data: Version: 1 (0x0) Subject: C = CH, O = strongSec GmbH, OU = AK RSA, CN = edu.strongsec.com Subject Public Key Info: Public Key Algorithm: rsaEncryption RSA Public-Key: (2048 bit) Modulus: 00:9e:cc:3c:be:0a:37:86:db:ab:a5:01:49:a4:be: 0f:10:0e:32:50:12:27:64:52:85:0f:21:5e:c7:14: f4:d9:7f:95:0a:22:91:73:9f:60:07:45:d3:8e:4b: 6d:94:00:83:44:ed:9c:f2:c0:14:9c:33:01:46:d0: 78:e4:10:ae:51:3a:9c:c2:b7:a0:c7:04:66:80:bb: c2:bc:02:5b:d6:de:da:93:98:de:a7:cd:a5:5d:c1: 8a:bb:13:8b:d9:21:88:c0:61:40:d2:30:eb:0d:dd: 63:8d:a4:e0:b0:1a:bb:18:7f:6e:62:e1:bf:b3:39: fa:c2:80:32:88:6a:da:f0:24:90:5c:16:b6:bb:30: 5d:96:25:24:cf:f2:03:19:0f:56:58:f2:32:00:51: 8b:0a:c3:15:81:db:34:ee:a4:64:5b:b6:3c:e6:d3: df:e3:16:80:07:0e:13:91:4d:18:9c:b3:fd:ca:72: 78:72:56:e9:13:4c:1d:a2:03:f0:e1:8d:cd:54:1c: 68:ea:46:47:1c:f9:f9:97:7a:f1:59:96:58:6c:d8: 8e:a9:15:fc:4d:93:5d:fa:51:5d:33:5a:bb:77:59: 18:3e:6b:f6:45:f7:92:c2:12:0a:bb:64:af:0b:ff: 0d:08:7a:18:90:d9:10:63:b1:6a:19:78:da:9d:ab: 7a:87 Exponent: 65537 (0x10001) Attributes: Requested Extensions: X509v3 Subject Alternative Name: DNS:edu.strongsec.com Signature Algorithm: sha256WithRSAEncryption 35:89:16:59:fc:ab:64:a9:a1:89:cc:d0:e6:a9:06:19:e1:5e: 11:98:20:ea:ca:f0:5f:06:3c:11:ff:72:98:96:92:08:91:68: d8:bd:e6:05:ed:ef:49:cf:22:6d:da:ab:2c:10:a7:df:59:a3: 0e:e4:bf:f6:8a:62:0b:28:eb:62:89:d0:50:d0:df:2f:5a:2d: 39:c6:7b:ac:34:6c:85:93:be:0d:9b:70:15:47:73:2f:00:da: 52:e3:65:c2:02:f9:88:0f:b8:f5:24:dc:db:43:15:fe:bc:8c: 98:96:81:aa:6d:aa:4c:6e:38:a2:89:27:5c:8d:27:5d:16:1a: fa:3b:e7:81:69:58:db:a9:9a:c7:ea:06:d2:1c:13:ba:ee:92: a4:8a:64:e3:5f:19:2c:d3:54:4f:3c:da:52:fc:9a:35:72:5c: a9:d4:93:7c:e3:69:08:2b:fb:4e:35:84:7e:e3:eb:95:86:2e: 5b:e5:01:c1:69:53:86:f9:6b:38:31:83:97:76:8b:ba:3d:9c: 28:5b:84:b0:9b:e9:91:8b:db:9e:4d:3b:03:db:f4:84:a6:8d: b2:18:9f:3a:3e:f9:36:64:15:98:4f:69:37:6b:9e:b2:92:a0: 9c:ab:05:35:65:28:b8:df:92:4b:fe:d1:40:6d:05:e2:4f:4e: 75:15:8c:22
ECC Certificate Request¶
We repeat the same for the ECC Attestation Key:
pki --req --type priv --keyid 0x81010004 \ --dn "C=CH, O=strongSec GmbH, OU=AK ECC, CN=edu.strongsec.com" \ --san edu.strongsec.com --outform pem > ak_ecc_req.pem TPM 2.0 via TSS2 v2 available signature algorithm is ECDSA with SHA256 hash Smartcard PIN: <return>
and verify that the certificate request has been self-signed by the ECC AK private-key:
openssl req -in ak_ecc_req.pem -noout -text Certificate Request: Data: Version: 1 (0x0) Subject: C = CH, O = strongSec GmbH, OU = AK ECC, CN = edu.strongsec.com Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:80:e7:cd:47:9e:c7:71:08:98:82:22:ed:99:1f: 40:50:bd:44:da:a1:ca:ac:0b:e2:13:7f:f3:ae:63: 99:61:74:a2:b6:15:ae:5c:27:9e:bd:f2:27:91:95: d1:ee:8f:99:93:ca:7b:4e:4e:87:a1:00:9e:94:24: b1:13:d1:11:2c ASN1 OID: prime256v1 NIST CURVE: P-256 Attributes: Requested Extensions: X509v3 Subject Alternative Name: DNS:edu.strongsec.com Signature Algorithm: ecdsa-with-SHA256 30:46:02:21:00:a0:3a:98:28:79:4b:bf:bd:90:92:d0:86:a2: 69:34:9c:61:6b:87:8e:d0:30:8b:69:b0:94:bd:20:1a:c2:d8: e8:02:21:00:8e:e1:3d:5a:84:69:a1:dc:eb:c3:68:7d:80:7c: 3b:73:c8:40:08:a2:88:56:94:03:9f:49:52:60:40:a1:9a:9f
Issuing Attestion Key Certificates¶
Certification Authority¶
X.509 end entity certificates have to be signed by an in-house or official external Certification Authority (CA). In our example we are using the strongSec 2016 Root CA which was generated in 2016 with the pki command
pki --gen --type rsa --size 4096 --outform pem > cakey.pem
creating a 4096 bit RSA key pair and then creating a self-signed CA certificate with a lifetime of 10 years
pki --self --ca --type rsa --in cakey.pem --dn="C=CH, O=strongSec GmbH, CN=strongSec 2016 Root CA" --lifetime 3652 --outform pem > cacert.pem
as the following listing shows:
pki --print --type x509 --in cacert.pem subject: "C=CH, O=strongSec GmbH, CN=strongSec 2016 Root CA" issuer: "C=CH, O=strongSec GmbH, CN=strongSec 2016 Root CA" validity: not before Sep 02 10:25:01 2016, ok not after Sep 02 10:25:01 2026, ok (expires in 2067 days) serial: 7c:24:43:4b:b7:dc:ef:7e flags: CA CRLSign self-signed subjkeyId: 6d:c2:af:37:49:41:b9:fd:f4:45:8b:aa:e0:03:3b:b9:e5:7b:9c:b5 pubkey: RSA 4096 bits keyid: 6c:79:f3:7a:b0:df:ac:69:03:b2:ac:6a:ed:82:3a:d2:66:93:b1:21 subjkey: 6d:c2:af:37:49:41:b9:fd:f4:45:8b:aa:e0:03:3b:b9:e5:7b:9c:b5
RSA Attestation Key Certificate¶
The PKCS#10 certificate request exported from the TPM is used to generate an RSA Attestation Key certificate signed by the Root CA:
pki --issue --cacert cacert.pem --cakey cakey.pem -type pkcs10 --in ak_rsa_req.pem --dn "C=CH, O=strongSec GmbH, OU=AK RSA, CN=edu.strongsec.com" --san "edu.strongsec.com" --crl http://www.strongsec.com/ca/strongsec.crl --flag serverAuth --lifetime 1827 > ak_rsa_cert.der
having the following content
pki --print --type x509 --in ak_rsa_cert.der subject: "C=CH, O=strongSec GmbH, OU=AK RSA, CN=edu.strongsec.com" issuer: "C=CH, O=strongSec GmbH, CN=strongSec 2016 Root CA" validity: not before Dec 23 15:26:22 2020, ok not after Dec 23 15:26:22 2025, ok (expires in 1825 days) serial: 79:e5:74:2f:a4:df:b8:d2 altNames: edu.strongsec.com flags: serverAuth CRL URIs: authkeyId: 6d:c2:af:37:49:41:b9:fd:f4:45:8b:aa:e0:03:3b:b9:e5:7b:9c:b5 subjkeyId: 48:82:62:15:74:a2:10:c5:75:70:c2:d6:7d:59:9f:22:d9:4f:9c:07 pubkey: RSA 2048 bits keyid: df:b7:8f:95:61:8f:70:84:f4:03:e8:7e:83:a6:dd:5f:c5:ff:72:b5 subjkey: 48:82:62:15:74:a2:10:c5:75:70:c2:d6:7d:59:9f:22:d9:4f:9c:07
ECC Attestation Key Certificate¶
The second PKCS#10 certificate request exported from the TPM is used to generate an ECC Attestation Key certificate signed by the Root CA:
pki --issue --cacert cacert.pem --cakey cakey.pem -type pkcs10 --in ak_ecc_req.pem --dn "C=CH, O=strongSec GmbH, OU=AK ECC, CN=edu.strongsec.com" --san "edu.strongsec.com" --crl http://www.strongsec.com/ca/strongsec.crl --flag serverAuth --lifetime 1827 > ak_ecc_cert.der
having the following content
pki --print --type x509 --in ak_ecc_cert.der subject: "C=CH, O=strongSec GmbH, OU=AK ECC, CN=edu.strongsec.com" issuer: "C=CH, O=strongSec GmbH, CN=strongSec 2016 Root CA" validity: not before Dec 23 15:27:40 2020, ok not after Dec 23 15:27:40 2025, ok (expires in 1825 days) serial: 65:fd:5b:98:47:11:f6:45 altNames: edu.strongsec.com flags: serverAuth CRL URIs: http://www.strongsec.com/ca/strongsec.crlq authkeyId: 6d:c2:af:37:49:41:b9:fd:f4:45:8b:aa:e0:03:3b:b9:e5:7b:9c:b5 subjkeyId: cc:83:49:87:2b:9e:f3:cb:b8:35:12:02:87:ff:14:89:28:44:a6:04 pubkey: ECDSA 256 bits keyid: ba:64:37:a4:0e:c8:42:67:8c:55:5a:f9:1b:2a:eb:ff:5f:40:c3:e3 subjkey: cc:83:49:87:2b:9e:f3:cb:b8:35:12:02:87:ff:14:89:28:44:a6:04
Storing Certificates in the NV RAM¶
A TPM 2.0 has a certain amount of Non Volatile Random Access Memory (NV RAM) that can be used to store arbitrary data, e.g. the X.509 certificates matching the persistent keys. If both the certificates and keys are persisted in the TPM then the system disk of the host can be reformatted at any time without loosing the machine or user credentials.As with smartcards the needed amount of memory must be reserved first so we check the size of the X.509 ECC certificate
ls -l ak_ecc_cert.der -rw-rw-r-- 1 andi andi 1001 Dez 23 15:31 ak_ecc_cert.der
The tpm2_nvdefine command allocates a memory location with a size of 1001 bytes that can be accessed via the handle 0x01800004 which is also called the NV index
tpm2_nvdefine 0x01800004 -C o -s 1001 -a 0x2000A nv-index: 0x1800004
Then we write the certificate file to the NV RAM destination using the tpm2_nvwrite command:
tpm2_nvwrite 0x01800004 -C o -i ak_ecc_cert.der
Removing Certificates from NV RAM¶
First we store the RSA AK certificate in the NV RAM under the handle 0x0180003
ls -l ak_rsa_cert.der -rw-rw-r-- 1 andi andi 1204 Dez 23 15:30 ak_rsa_cert.der
tpm2_nvdefine 0x01800003 -C o -s 1204 -a 0x2000A nv-index: 0x1800003
tpm2_nvwrite 0x01800003 -C o -i ak_rsa_cert.der
Since we are not going to use the RSA AK certificate we decide to release the memory assigned to NV index 0x01800003 via the tpm2_nvundefine command:
tpm2_nvundefine 0x01800003
Configure TPM Private Key Access via VICI Interface¶
Configuration of TPM private key access as tokens in the secrets section of swanctl.conf
secrets {
token_ak_rsa {
handle = 81010003
}
token_ak_ecc {
handle = 81010004
}
}
Define IPsec Connection with RSA AK Client Key¶
This connection configuration in swanctl.conf uses the RSA AK certificate for client authentication
connections { rsa { local_addrs = 10.10.0.105 remote_addrs = 10.10.0.104 local { auth = pubkey certs = raspi5_ak_rsa_Cert.der } remote { auth = pubkey id = raspi4.example.com } children { rsa { mode = transport esp_proposals = aes128-sha256-curve25519 } } version = 2 proposals = aes128-sha256-curve25519 } }
Define IPsec Connection with ECC AK Client Key¶
This connection configuration in swanctl.conf references the ECC AK certificate used for client authentication via its handle, i.e. the NV index
connections { ecc { local_addrs = 10.10.0.105 remote_addrs = 10.10.0.104 local { auth = pubkey cert-tpm { handle = 0x01800004 } } remote { auth = pubkey id = raspi4.example.com } children { ecc { mode = transport esp_proposals = aes128-sha256-curve25519 } } version = 2 proposals = aes128-sha256-curve25519 } }
Starting the strongSwan Daemon¶
systemctl start strongswan-swanctl
Feb 19 10:52:01 raspi5 systemd[1]: Starting strongSwan IPsec IKEv1/IKEv2 daemon using swanctl... Feb 19 10:52:01 raspi5 charon-systemd[21165]: loaded plugins: charon-systemd charon-systemd random nonce x509 constraints openssl pem pkcs1 pkcs8 pkcs12 pubkey mgf1 ntru curve25519 eap-identity eap-ttls eap-tnc tnc-tnccs tnc-imc tnccs-20 socket-default kernel-netlink vici tpm Feb 19 10:52:01 raspi5 charon-systemd[21165]: spawning 16 worker threads Feb 19 10:52:01 raspi5 charon-systemd[21165]: loaded certificate 'C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com' Feb 19 10:52:01 raspi5 charon-systemd[21165]: loaded certificate 'C=US, O=TNC Demo, CN=TNC Demo CA'
The RSA AK private key is attached to the charon-systemd daemon via the TPM 2.0 resource manager
Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 - manufacturer: IFX (SLB9670) rev: 01.16 2015 Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 - algorithms: RSA SHA1 HMAC AES KEYEDHASH XOR SHA256 RSASSA RSAES RSAPSS OAEP ECDSA ECDH SM2 KDF1_SP800_56A KDF1_SP800_108 ECC SYMCIPHER CFB Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 - ECC curves: NIST_P256 BN_P256 Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 via TSS2 v2 available Feb 19 10:52:01 raspi5 charon-systemd[21165]: AIK signature algorithm is RSASSA with SHA256 hash Feb 19 10:52:01 raspi5 charon-systemd[21165]: loaded RSA private key from token F
The ECC AK private key is attached to the charon-systemd daemon via the TPM 2.0 resource manager
Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 - manufacturer: IFX (SLB9670) rev: 01.16 2015 Feb 19 10:52:01 raspi5 charon-systemd[21165]: TPM 2.0 - algorithms: RSA SHA1 HMAC AES KEYEDHASH XOR SHA256 RSASSA RSAES RSAPSS OAEP ECDSA ECDH SM2 KDF1_SP800_56A KDF1_SP800_108 ECC SYMCIPHER CFB Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 - ECC curves: NIST_P256 BN_P256 Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 via TSS2 v2 available Feb 19 10:52:02 raspi5 charon-systemd[21165]: AIK signature algorithm is ECDSA with SHA256 hash Feb 19 10:52:02 raspi5 charon-systemd[21165]: loaded ECDSA private key from token
The ECC AIK certificate is loaded by the charon-systemd daemon via the TPM 2.0 resource manager
Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 - manufacturer: IFX (SLB9670) rev: 01.16 2015 Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 - algorithms: RSA SHA1 HMAC AES KEYEDHASH XOR SHA256 RSASSA RSAES RSAPSS OAEP ECDSA ECDH SM2 KDF1_SP800_56A KDF1_SP800_108 ECC SYMCIPHER CFB Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 - ECC curves: NIST_P256 BN_P256 Feb 19 10:52:02 raspi5 charon-systemd[21165]: TPM 2.0 via TSS2 v2 available Feb 19 10:52:02 raspi5 charon-systemd[21165]: loaded certificate from TPM NV index 0x01800004
The two connection definitions are received by the charon-systemd daemon from the swanctl command line tool via the VICI interface
Feb 19 10:52:02 raspi5 charon-systemd[21165]: id not specified, defaulting to cert subject 'C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com' Feb 19 10:52:02 raspi5 charon-systemd[21165]: added vici connection: rsa Feb 19 10:52:02 raspi5 charon-systemd[21165]: id not specified, defaulting to cert subject 'C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com' Feb 19 10:52:02 raspi5 charon-systemd[21165]: added vici connection: ecc
The swanctl command line tool reports its actions
Feb 19 10:52:02 raspi5 swanctl[21183]: loaded certificate from '/etc/swanctl/x509/raspi5_ak_rsa_Cert.der' Feb 19 10:52:02 raspi5 swanctl[21183]: loaded certificate from '/etc/swanctl/x509ca/demoCaCert.pem' Feb 19 10:52:02 raspi5 swanctl[21183]: loaded key token_ak_rsa from token [keyid: f49e857dde4e67f5fb870398673f207cf33f2b66] Feb 19 10:52:02 raspi5 swanctl[21183]: loaded key token_ak_ecc from token [keyid: c70e63f87f6ff65500e5057f5a3e6b6ce7d2d513] Feb 19 10:52:02 raspi5 swanctl[21183]: loaded connection 'rsa' Feb 19 10:52:02 raspi5 swanctl[21183]: loaded connection 'ecc' Feb 19 10:52:02 raspi5 swanctl[21183]: successfully loaded 2 connections, 0 unloaded
Feb 19 10:52:02 raspi5 systemd[1]: Started strongSwan IPsec IKEv1/IKEv2 daemon using swanctl.
The following swanctl command shows the two loaded connections
swanctl --list-conns
rsa: IKEv2, reauthentication every 10800s, no rekeying local: 10.10.0.105 remote: 10.10.0.104 local public key authentication: id: C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com certs: C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com remote public key authentication: id: raspi4.example.com rsa: TRANSPORT, rekeying every 3600s or 300000000 bytes or 500000 packets local: dynamic remote: dynamic
ecc: IKEv2, reauthentication every 10800s, no rekeying local: 10.10.0.105 remote: 10.10.0.104 local public key authentication: id: C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com certs: C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com remote public key authentication: id: raspi4.example.com ecc: TRANSPORT, rekeying every 3600s or 300000000 bytes or 500000 packets local: dynamic remote: dynamic
The loaded certificates can also be displayed
swanctl --list-certs
You can clearly see that the connection between the AK certificates and their matching AK private key has been established (..., has private key)
List of X.509 End Entity Certificates subject: "C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com" issuer: "C=US, O=TNC Demo, CN=TNC Demo CA" validity: not before Feb 19 09:33:43 2017, ok not after Aug 29 10:33:43 2026, ok (expires in 3477 days) serial: 11:57:33:3e:2a:8e:8a:32 altNames: raspi5.example.com authkeyId: 21:02:7e:2d:de:8b:77:48:75:de:56:2f:b5:d4:62:ec:c3:09:15:f2 subjkeyId: f4:9e:85:7d:de:4e:67:f5:fb:87:03:98:67:3f:20:7c:f3:3f:2b:66 pubkey: RSA 2048 bits, has private key keyid: 71:21:f5:d4:7e:59:4a:88:16:ca:57:85:98:3d:36:a7:b1:d5:75:fa subjkey: f4:9e:85:7d:de:4e:67:f5:fb:87:03:98:67:3f:20:7c:f3:3f:2b:66 subject: "C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com" issuer: "C=US, O=TNC Demo, CN=TNC Demo CA" validity: not before Feb 17 23:17:19 2017, ok not after Aug 30 00:17:19 2026, ok (expires in 3478 days) serial: 52:9d:3e:42:6f:71:63:3d altNames: raspi5.example.com authkeyId: 21:02:7e:2d:de:8b:77:48:75:de:56:2f:b5:d4:62:ec:c3:09:15:f2 subjkeyId: c7:0e:63:f8:7f:6f:f6:55:00:e5:05:7f:5a:3e:6b:6c:e7:d2:d5:13 pubkey: ECDSA 256 bits, has private key keyid: 71:49:7c:42:41:e7:c6:81:bc:31:73:f0:0f:7e:4a:e1:2d:53:00:38 subjkey: c7:0e:63:f8:7f:6f:f6:55:00:e5:05:7f:5a:3e:6b:6c:e7:d2:d5:13
List of X.509 CA Certificates subject: "C=US, O=TNC Demo, CN=TNC Demo CA" issuer: "C=US, O=TNC Demo, CN=TNC Demo CA" validity: not before Aug 31 10:29:27 2016, ok not after Aug 31 10:29:27 2026, ok (expires in 3479 days) serial: 02:c8:85:e1:ef:fa:8f:20 flags: CA CRLSign self-signed subjkeyId: 21:02:7e:2d:de:8b:77:48:75:de:56:2f:b5:d4:62:ec:c3:09:15:f2 pubkey: ECDSA 256 bits keyid: a1:b5:e0:29:d0:4c:a7:62:bd:ca:a3:b4:af:18:42:2c:4a:01:55:9a subjkey: 21:02:7e:2d:de:8b:77:48:75:de:56:2f:b5:d4:62:ec:c3:09:15:f2
IKEv2 Authentication with RSA AIK Certificate¶
With the following swanctl command the "rsa" connection is established
swanctl --initiate --child rsa
Feb 19 10:52:21 raspi5 charon-systemd[21165]: vici initiate 'rsa' Feb 19 10:52:21 raspi5 charon-systemd[21165]: initiating IKE_SA rsa[1] to 10.10.0.104 Feb 19 10:52:21 raspi5 charon-systemd[21165]: generating IKE_SA_INIT request 0 [ SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP) V ] Feb 19 10:52:21 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[500] to 10.10.0.104[500] (1257 bytes) Feb 19 10:52:21 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[500] to 10.10.0.105[500] (1259 bytes) Feb 19 10:52:21 raspi5 charon-systemd[21165]: parsed IKE_SA_INIT response 0 [ SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ N(HASH_ALG) V ] Feb 19 10:52:21 raspi5 charon-systemd[21165]: received strongSwan vendor ID Feb 19 10:52:21 raspi5 charon-systemd[21165]: received cert request for "C=US, O=TNC Demo, CN=TNC Demo CA" Feb 19 10:52:21 raspi5 charon-systemd[21165]: sending cert request for "C=US, O=TNC Demo, CN=TNC Demo CA"
The RSA AK private key stored in the TPM 2.0 is used to generate an RSA_EMSA_PKCS1_SHA2_256 signature which is sent in the AUTH payload of the IKE_AUTH request. The matching client certificate is sent int the CERT payload.
Feb 19 10:52:24 raspi5 charon-systemd[21165]: authentication of 'C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com' (myself) with RSA_EMSA_PKCS1_SHA2_256 successful Feb 19 10:52:24 raspi5 charon-systemd[21165]: sending end entity cert "C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com"
Feb 19 10:52:24 raspi5 charon-systemd[21165]: establishing CHILD_SA rsa Feb 19 10:52:24 raspi5 charon-systemd[21165]: generating IKE_AUTH request 1 [ IDi CERT CERTREQ IDr AUTH N(USE_TRANSP) SA TSi TSr N(MOBIKE_SUP) N(ADD_6_ADDR) N(EAP_ONLY) N(MSG_ID_SYN_SUP) ] Feb 19 10:52:24 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[4500] to 10.10.0.104[4500] (1296 bytes) Feb 19 10:52:24 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[4500] to 10.10.0.105[4500] (752 bytes) Feb 19 10:52:24 raspi5 charon-systemd[21165]: parsed IKE_AUTH response 1 [ IDr CERT AUTH N(USE_TRANSP) SA TSi TSr N(AUTH_LFT) N(MOBIKE_SUP) N(NO_ADD_ADDR) ] Feb 19 10:52:24 raspi5 charon-systemd[21165]: received end entity cert "C=US, O=TNC Demo, CN=raspi4.example.com" Feb 19 10:52:24 raspi5 charon-systemd[21165]: using certificate "C=US, O=TNC Demo, CN=raspi4.example.com" Feb 19 10:52:24 raspi5 charon-systemd[21165]: using trusted ca certificate "C=US, O=TNC Demo, CN=TNC Demo CA" Feb 19 10:52:24 raspi5 charon-systemd[21165]: reached self-signed root ca with a path length of 0 Feb 19 10:52:24 raspi5 charon-systemd[21165]: authentication of 'raspi4.example.com' with ECDSA_WITH_SHA256_DER successful Feb 19 10:52:24 raspi5 charon-systemd[21165]: IKE_SA rsa[1] established between 10.10.0.105[C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com]...10.10.0.104[raspi4.example.com] Feb 19 10:52:24 raspi5 charon-systemd[21165]: scheduling reauthentication in 10507s Feb 19 10:52:24 raspi5 charon-systemd[21165]: maximum IKE_SA lifetime 11587s Feb 19 10:52:24 raspi5 charon-systemd[21165]: CHILD_SA rsa{1} established with SPIs c23deb9d_i ce48d08e_o and TS 10.10.0.105/32 === 10.10.0.104/32 Feb 19 10:52:24 raspi5 charon-systemd[21165]: received AUTH_LIFETIME of 10103s, scheduling reauthentication in 9023s Feb 19 10:52:24 raspi5 charon-systemd[21165]: peer supports MOBIKE
The following swanctl command shows the established IPsec connection
swanctl --list-sas
rsa: #1, ESTABLISHED, IKEv2, 7ba3b4d06c051ecb_i* 14e1769a8aeb7f28_r local 'C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com' @ 10.10.0.105[4500] remote 'raspi4.example.com' @ 10.10.0.104[4500] AES_CBC-128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/CURVE_25519 established 252s ago, reauth in 8771s rsa: #1, reqid 1, INSTALLED, TRANSPORT, ESP:AES_CBC-128/HMAC_SHA2_256_128 installed 252s ago, rekeying in 3258s, expires in 3708s in c23deb9d, 640 bytes, 10 packets, 3s ago out ce48d08e, 640 bytes, 10 packets, 3s ago local 10.10.0.105/32 remote 10.10.0.104/32
With this swanctl command the "rsa" connection is terminated
swanctl --terminate --ike rsa
Feb 19 10:59:16 raspi5 charon-systemd[21165]: vici terminate IKE_SA 'rsa' Feb 19 10:59:16 raspi5 charon-systemd[21165]: deleting IKE_SA rsa[1] between 10.10.0.105[C=US, O=TNC Demo, OU=AIK RSA, CN=raspi5.example.com]...10.10.0.104[raspi4.example.com] Feb 19 10:59:16 raspi5 charon-systemd[21165]: sending DELETE for IKE_SA rsa[1] Feb 19 10:59:16 raspi5 charon-systemd[21165]: generating INFORMATIONAL request 2 [ D ] Feb 19 10:59:16 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[4500] to 10.10.0.104[4500] (80 bytes) Feb 19 10:59:16 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[4500] to 10.10.0.105[4500] (80 bytes) Feb 19 10:59:16 raspi5 charon-systemd[21165]: parsed INFORMATIONAL response 2 [ ] Feb 19 10:59:16 raspi5 charon-systemd[21165]: IKE_SA deleted
IKEv2 Authentication with ECC AIK Certificate¶
Next we initiate the "ecc" connection
swanctl --initiate --child ecc
Feb 19 11:00:32 raspi5 charon-systemd[21165]: vici initiate 'ecc' Feb 19 11:00:32 raspi5 charon-systemd[21165]: initiating IKE_SA ecc[2] to 10.10.0.104 Feb 19 11:00:32 raspi5 charon-systemd[21165]: generating IKE_SA_INIT request 0 [ SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP) V ] Feb 19 11:00:32 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[500] to 10.10.0.104[500] (1257 bytes) Feb 19 11:00:32 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[500] to 10.10.0.105[500] (1259 bytes) Feb 19 11:00:32 raspi5 charon-systemd[21165]: parsed IKE_SA_INIT response 0 [ SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ N(HASH_ALG) V ] Feb 19 11:00:32 raspi5 charon-systemd[21165]: received strongSwan vendor ID Feb 19 11:00:32 raspi5 charon-systemd[21165]: received cert request for "C=US, O=TNC Demo, CN=TNC Demo CA" Feb 19 11:00:32 raspi5 charon-systemd[21165]: sending cert request for "C=US, O=TNC Demo, CN=TNC Demo CA"
The ECC AK private key stored in the TPM 2.0 is used to generate an ECDSA_WITH_SHA256_DER signature which is sent in the AUTH payload of the IKE_AUTH request. The matching client certificate is sent int the CERT payload.
Feb 19 11:00:34 raspi5 charon-systemd[21165]: authentication of 'C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com' (myself) with ECDSA_WITH_SHA256_DER successful Feb 19 11:00:34 raspi5 charon-systemd[21165]: sending end entity cert "C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com"
Feb 19 11:00:34 raspi5 charon-systemd[21165]: establishing CHILD_SA ecc Feb 19 11:00:34 raspi5 charon-systemd[21165]: generating IKE_AUTH request 1 [ IDi CERT CERTREQ IDr AUTH N(USE_TRANSP) SA TSi TSr N(MOBIKE_SUP) N(ADD_6_ADDR) N(EAP_ONLY) N(MSG_ID_SYN_SUP) ] Feb 19 11:00:34 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[4500] to 10.10.0.104[4500] (912 bytes) Feb 19 11:00:34 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[4500] to 10.10.0.105[4500] (752 bytes) Feb 19 11:00:34 raspi5 charon-systemd[21165]: parsed IKE_AUTH response 1 [ IDr CERT AUTH N(USE_TRANSP) SA TSi TSr N(AUTH_LFT) N(MOBIKE_SUP) N(NO_ADD_ADDR) ] Feb 19 11:00:34 raspi5 charon-systemd[21165]: received end entity cert "C=US, O=TNC Demo, CN=raspi4.example.com" Feb 19 11:00:34 raspi5 charon-systemd[21165]: using certificate "C=US, O=TNC Demo, CN=raspi4.example.com" Feb 19 11:00:34 raspi5 charon-systemd[21165]: using trusted ca certificate "C=US, O=TNC Demo, CN=TNC Demo CA" Feb 19 11:00:34 raspi5 charon-systemd[21165]: reached self-signed root ca with a path length of 0 Feb 19 11:00:34 raspi5 charon-systemd[21165]: authentication of 'raspi4.example.com' with ECDSA_WITH_SHA256_DER successful Feb 19 11:00:34 raspi5 charon-systemd[21165]: IKE_SA ecc[2] established between 10.10.0.105[C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com]...10.10.0.104[raspi4.example.com] Feb 19 11:00:34 raspi5 charon-systemd[21165]: scheduling reauthentication in 10180s Feb 19 11:00:34 raspi5 charon-systemd[21165]: maximum IKE_SA lifetime 11260s Feb 19 11:00:34 raspi5 charon-systemd[21165]: CHILD_SA ecc{2} established with SPIs c2c16cd0_i c47ea6f6_o and TS 10.10.0.105/32 === 10.10.0.104/32 Feb 19 11:00:34 raspi5 charon-systemd[21165]: received AUTH_LIFETIME of 9880s, scheduling reauthentication in 8800s Feb 19 11:00:34 raspi5 charon-systemd[21165]: peer supports MOBIKE
The establed IKE and CHILD SAs are displayed
swanctl --list-sas
ecc: #2, ESTABLISHED, IKEv2, b7f2652777b0996a_i* 12282b5964ff0658_r local 'C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com' @ 10.10.0.105[4500] remote 'raspi4.example.com' @ 10.10.0.104[4500] AES_CBC-128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/CURVE_25519 established 126s ago, reauth in 8674s ecc: #2, reqid 2, INSTALLED, TRANSPORT, ESP:AES_CBC-128/HMAC_SHA2_256_128 installed 126s ago, rekeying in 3252s, expires in 3834s in c2c16cd0, 320 bytes, 5 packets, 2s ago out c47ea6f6, 320 bytes, 5 packets, 2s ago local 10.10.0.105/32 remote 10.10.0.104/32
The IKE and CHILD SAs are terminated
swanctl --terminate --ike ecc
Feb 19 11:04:32 raspi5 charon-systemd[21165]: vici terminate IKE_SA 'ecc' Feb 19 11:04:32 raspi5 charon-systemd[21165]: deleting IKE_SA ecc[2] between 10.10.0.105[C=US, O=TNC Demo, OU=AIK ECC, CN=raspi5.example.com]...10.10.0.104[raspi4.example.com] Feb 19 11:04:32 raspi5 charon-systemd[21165]: sending DELETE for IKE_SA ecc[2] Feb 19 11:04:32 raspi5 charon-systemd[21165]: generating INFORMATIONAL request 2 [ D ] Feb 19 11:04:32 raspi5 charon-systemd[21165]: sending packet: from 10.10.0.105[4500] to 10.10.0.104[4500] (80 bytes) Feb 19 11:04:32 raspi5 charon-systemd[21165]: received packet: from 10.10.0.104[4500] to 10.10.0.105[4500] (80 bytes) Feb 19 11:04:32 raspi5 charon-systemd[21165]: parsed INFORMATIONAL response 2 [ ] Feb 19 11:04:32 raspi5 charon-systemd[21165]: IKE_SA deleted