Project

General

Profile

Speed Comparison of Public Key Algorithms » History » Version 5

« Previous - Version 5/32 (diff) - Next » - Current version
Andreas Steffen, 09.06.2009 13:59
increased legibility


Speed comparison of public key algorithms

32bit, User-Mode-Linux on a Core2Duo T9400 (one core)

Key type Operations/s gmp gcrypt openssl
RSA 512 sign 3'791 1'831 2'105
verify 29'630 16'667 25'806
RSA 768 sign 1'519 709 810
verify 18'182 10'714 15'385
RSA 1024 sign 713 292 485
verify 11'765 6'897 11'111
RSA 1536 sign 240 102 184
verify 5'882 3'774 5'882
RSA 2048 sign 110 47 93
verify 3'571 2'326 3'704
ECDSA 256 sign N/A N/A 522
verify N/A N/A 440
ECDSA 384 sign N/A N/A 226
verify N/A N/A 180
ECDSA 521 sign N/A N/A 109
verify N/A N/A 90
DH group Operations/s gmp gcrypt openssl gmp* gcrypt* openssl*
MODP768 A=g^a mod p 368 243 212 741 531 319
S=B^a mod p 448 190 290 1176 496 541
MODP1024 A=g^a mod p 196 125 136 494 388 272
S=B^a mod p 213 89 167 727 320 440
MODP1536 A=g^a mod p 68 45 62 308 220 196
S=B^a mod p 71 31 64 385 175 286
MODP2048 A=g^a mod p 31 21 28 149 98 116
S=B^a mod p 32 13 30 164 71 141
ECP192 A=g^a mod p N/A N/A 166 - - -
S=B^a mod p N/A N/A 171 - - -
ECP224 A=g^a mod p N/A N/A 157 - - -
S=B^a mod p N/A N/A 162 - - -
ECP256 A=g^a mod p N/A N/A 148 - - -
S=B^a mod p N/A N/A 152 - - -
ECP384 A=g^a mod p N/A N/A 91 - - -
S=B^a mod p N/A N/A 91 - - -
ECP521 A=g^a mod p N/A N/A 63 - - -
S=B^a mod p N/A N/A 65 - - -

64bit under VirtualBox, Core2Duo T9400 (one core):

Key type Operations/s gmp gcrypt openssl
RSA 512 sign 13'082 3'530 7'478
verify 103'733 36'197 5'9598
RSA 768 sign 5'523 1'603 3'154
verify 61'520 25'411 35'704
RSA 1024 sign 2'742 766 1'577
verify 41'377 16'098 26'314
RSA 1536 sign 937 285 555
verify 22'148 10'941 13'607
RSA 2048 sign 433 133 258
verify 13'500 6'524 8'345
ECDSA 256 sign N/A N/A 1'267
verify N/A N/A 1'143
ECDSA 384 sign N/A N/A 577
verify N/A N/A 508
ECDSA 521 sign N/A N/A 291
verify N/A N/A 255
DH group Operations/s gmp gcrypt openssl gmp* gcrypt* openssl*
MODP768 A=g^a mod p 1'853 790 1'088 5'622 2'151 2'656
S=B^a mod p 1'882 595 1'191 5'737 1'779 3'280
MODP1024 A=g^a mod p 862 347 491 3'523 1'352 1'689
S=B^a mod p 869 274 535 3'431 1'035 1'928
MODP1536 A=g^a mod p 269 135 168 1'612 776 837
S=B^a mod p 278 98 174 1'648 571 900
MODP2048 A=g^a mod p 117 55 73 689 298 362
S=B^a mod p 122 38 74 660 214 380
ECP192 A=g^a mod p N/A N/A 1'699 - - -
S=B^a mod p N/A N/A 1'727 - - -
ECP224 A=g^a mod p N/A N/A 1'494 - - -
S=B^a mod p N/A N/A 1'589 - - -
ECP256 A=g^a mod p N/A N/A 1'298 - - -
S=B^a mod p N/A N/A 1'423 - - -
ECP384 A=g^a mod p N/A N/A 591 - - -
S=B^a mod p N/A N/A 609 - - -
ECP521 A=g^a mod p N/A N/A 306 - - -
S=B^a mod p N/A N/A 313 - - -

* = using reduced exponent size (libstrongswan.dh_exponent_ansi_x9_42 = no)